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Tensor rank

Let V1, . . . ,Vm be C-vector spaces of dimension dim Vi = ni +1.

A tensor T ∈ V = V1 ⊗ . . .⊗ Vm is

T =
∑

αi1,...,imvi1 ⊗ . . .⊗ vim

where the coefficients αi1,...,im ∈ C and the vectors vij ∈ Vj .

There are some distinguished elements in V that we commonly
use to represent all the other elements

Elementary tensors
A tensor

v1 ⊗ . . .⊗ vm ∈ V

with vi ∈ Vi is called elementary tensor.
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Tensor rank

Note that using elementary tensors we can construct a basis
for V and thus for any T ∈ V we can write

T =
r∑

i=1

Ei

where the Ei are elementary tensors.
We give the following definition

Tensor rank
The tensor rank of T is

rk(T ) = min{r : T =
r∑

i=1

Ei ,Ei elementary}.
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Tensor rank

Example V = V1 ⊗ V2

In this case T ∈ V can be written as

T =
∑
i,j

αijvi ⊗ vj .

Fixing bases in V1 and V2, T corresponds to the
dim V1 × dim V2 matrix

AT = (αij).

Elementary tensors correspond to matrices of rank one, thus

rk(T ) = rk(AT ).

4/15 E. Carlini Tensors, ranks, and varieties.



Tensor rank

By basic properties of the tensor product we know that
multilinear operators are tensors.

For example, the
multiplication of two matrices

A ∈ Cn,m,B ∈ Cm,p

corresponds to a tensor

M〈n,m,p〉

M〈n,m,p〉 ∈ Cn,m∗⊗ ∈ Cm,p∗ ⊗ Cn,p

is the matrix multiplication tensor. If n = m = p, that is for
square matrices, we just write M〈n〉.

Knowing rk(M〈n,m,p〉) relates to the computational complexity of
matrix multiplication.
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Tensor rank

It is not difficult to find an upper bound for rk(M〈n,m,p〉).

rk(M〈n,m,p〉) ≤ nmp

Given matrices

A = (aij) ∈ Cn,m,B = (bjl) ∈ Cm,p,C = (cil) ∈ Cn,p

and choosing dual bases {αij} and {βjl} we get that

M〈n,m,p〉 =
∑

ijl

αij ⊗ βjl ⊗ cil

and thus the conclusion follows.

For example rk(M〈n〉) ≤ n3.
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Tensor rank

Strassen’s result and M〈2〉
The usual matrix multiplication in the case 2× 2 is

M〈2〉 ∈ C2,2⊗ ∈ C2,2 ⊗ C2,2

where

M〈2〉 =
8∑

i=1

Ei

for eight elementary tensors and thus

rk(M〈2〉) ≤ 8.

But in the ’60s Strassen wanted to prove that equality holds
and...
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Tensor rank

Strassen’s result and M〈2〉
Strassen showed that

rk(M〈2〉) ≤ 7,

and we now know that equality holds. That is

M〈2〉 =
7∑

i=1

Fi

for seven, and no fewer, elementary tensors Fi . Thus one can
multiply n × n matrix with complexity

O(nlog27).
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Tensor rank

M〈3〉
Clearly

rk(M〈3〉) ≤ 27,

and we know that

19 ≤ rk(M〈3〉) ≤ 23,

but we do not know the actual value yet!
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X-rank

We want to find a uniform setting to deal with different notions
of ranks (e.g. tensor rank, symmetric rank).

First we note that
our rank definition are invariant up to scalar multiplication, thus
it is natural to work over the projective space.

Projective space
Given a N + 1 dimensional vector space V , we define

P(V ) = PN \ 0 = V/C∗

and [v ] ∈ P(V ) is the equivalence class {λv : λ ∈ C \ {0}}.
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X-rank

We want to work with special subset of the projective space,
namely algebraic varieties.

V(I)

Given a homogeneous ideal I ⊆ C[x0, . . . , xN ] we define the
algebraic variety

V (I) = {p ∈ Pn : F (p) = 0 for each F ∈ I}.

Note that to each algebraic variety X ⊆ PN corresponds a
radical ideal

I(X)

I(X ) = {F ∈ S : F (p) = 0 for each p ∈ X}.
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X-rank

Some features of algebraic varieties
The algebraic variety X is completely determined by the
ideal I(X )

All ideal I ⊆ S have a finite number of generators (Hilbert’s
basis theorem)
For each ideal we can compute a numerical function
HFI(X)(t) giving to us several information about X :
emptyness, dimension, degree, etc (Hilbert function)
Groebner bases of I(X ) are used to study X , for example
its projections (Elimination theory)
The image of an algebraic projective variety via a
polynomial map is a projective variety
Algebraic varieties are the closed subset of the Zariski
topology
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X-rank

Given an algebraic variety X ⊂ PN and a point p ∈ PN , we
define

X -rank
The X -rank of p with respect to X is

X−rk(p) = min{r : p ∈ 〈p1, . . . ,pr 〉,pi ∈ X}

where

〈p1, . . . ,pr 〉 = P({λ1v1 + . . .+ λr vr : λi ∈ C})

is the linear span of the points pi = [vi ]’s.

Clearly, X−rk(p) = 1 if and only if p ∈ X .
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X-rank

Segre varieties

Given vector spaces V1, . . . ,Vt , we consider the map

s : P(V1)× . . .× P(Vt) −→ P(V1 ⊗ . . .⊗ Vt)

[v1], . . . , [vt ] 7→ [v1 ⊗ . . .⊗ vt ]

this is called the Segre map and its image X is called the Segre
product of the varieties P(Vi).
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X-rank

Segre varieties

Since the Segre variety X = s(P(V1)× . . .× P(Vt))
parameterizes elementary tensors in V1 ⊗ . . .⊗ Vt , it is clear
that

X−rk([T ]) = min{r : [T ] ∈ 〈[E1], . . . , [Er ]〉}

and thus the X -rank with respect to the Segre variety is just the
(tensor) rank.
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